National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Implementation of 2D Ultrasound Simulations
Šimek, Dominik ; Vaverka, Filip (referee) ; Jaroš, Jiří (advisor)
The work deals with design and implementation of 2D ultrasound simulation. Applications of the ultrasound simulation can be found in medicine, biophysic or image reconstruction. As an example of using the ultrasound simulation we can mention High Intensity Focused Ultrasound that is used for diagnosing and treating cancer. The program is part of the k-Wave toolbox designed for supercomputer systems, specifically for machines with shared memory architecture. The program is implemented in the C++ language and using OpenMP acceleration.  Using the designed solution, it is possible to solve large-scale simulations in 2D space. The work also deals with merging and unification of the 2D and 3D simulation using modern C++. A realistic example of use is ultrasound simulation in transcranial neuromodulation and neurostimulation in large domains, which have more than 16384x16384 grid points. Simulation of such size may take several days if we use the original MATLAB 2D k-Wave. Speedup of the new implementation is up to 8 on the Anselm and Salomon supercomputers.
Implementation of 2D Ultrasound Simulations
Šimek, Dominik ; Vaverka, Filip (referee) ; Jaroš, Jiří (advisor)
The work deals with design and implementation of 2D ultrasound simulation. Applications of the ultrasound simulation can be found in medicine, biophysic or image reconstruction. As an example of using the ultrasound simulation we can mention High Intensity Focused Ultrasound that is used for diagnosing and treating cancer. The program is part of the k-Wave toolbox designed for supercomputer systems, specifically for machines with shared memory architecture. The program is implemented in the C++ language and using OpenMP acceleration.  Using the designed solution, it is possible to solve large-scale simulations in 2D space. The work also deals with merging and unification of the 2D and 3D simulation using modern C++. A realistic example of use is ultrasound simulation in transcranial neuromodulation and neurostimulation in large domains, which have more than 16384x16384 grid points. Simulation of such size may take several days if we use the original MATLAB 2D k-Wave. Speedup of the new implementation is up to 8 on the Anselm and Salomon supercomputers.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.